MATH 122B: HOMEWORK 2

Suggested due date: August 15th, 2016
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(1) Compute the integral

where C'is the circle |z — 2| = 2 traversed once in the counter clockwise direction.

where C' is a simple closed curve containing the point 0 and 2.

(2) Compute

(3) Let D be an open connected set and C' a closed curve in D. Suppose f is holomorphic on
D and the derivative f'(z) is continuous on D. Show that
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is purely imaginary.
(4) Evaluate
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where C' is any simple closed curve enclosing 0.

(5) Let f be holomorphic inside and on the unit circle C. Show that, for 0 < |z| < 1,

2m’f(z):/c f(“’)zdw—/c f(“’)ldw.
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From this, deduce the Poisson integral formula
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(6) If f(z) is holomorphic and |f(z)| < =T in |z| < 1, show that |f'(0)] < 4.

(7) Let f(2) be holomorphic on C such that |f/(2)| < |z|. Show that f(z) = a+ bz? with some
constants a,b € C such that [b| < 1.

2z
(8) Find the Laurent series of ——— around z = 1.

(z—1)°
(9) Evaluate
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where C' is the curve |z| = 3, oriented positively.
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SOLUTIONS

(1) Since 7 < 4, by Cauchy integral formula, 2mie®".
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(2) By residue theorem, 2mi($ — 1).
(3)

/Cmdf(@ = —/Cd(?)f(z) = —/Cf(z)f’(z)dz

hence is equal to negative of its conjugate (why are the equations valid?). A more elemen-
tary method was done in class.

(4) By series expansion,
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hence the 1/z component of is 0, hence the answer is 0. There are other ways
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to do this as well, for instance, this is the 3rd derivative of cosh(z) at z = 0, which is
sinh(0) = 0.

(5) Since |1/z| > 1, it is outside the unit disk so the second integral is 0.
(6) Use Cauchy integral formula for the derivative for a circle of radius % centered at 0.

(7) By Cauchy integral formula for the derivative,
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For R sufficiently large. Hence f” is bounded and entire, hence constant. Use |f/(0)| < 0
to show that the linear term is zero.

(8) One way to compute is

Then divide by (z — 1)3.

(9) Use Residue theorem, answer is 2mi.
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