MATH 122B: HOMEWORK 2

Suggested due date: August 15th, 2016
(1) Compute the integral

$$
\int_{C} \frac{e^{2 z}+\sin (z)}{z-\pi} d z
$$

where C is the circle $|z-2|=2$ traversed once in the counter clockwise direction.
(2) Compute

$$
\int_{C} \frac{e^{z}}{z(z-2)} d z
$$

where C is a simple closed curve containing the point 0 and 2 .
(3) Let D be an open connected set and C a closed curve in D. Suppose f is holomorphic on D and the derivative $f^{\prime}(z)$ is continuous on D. Show that

$$
I=\int_{C} \overline{f(z)} f^{\prime}(z) d z
$$

is purely imaginary.
(4) Evaluate

$$
\int_{C} \frac{e^{z}+e^{-z}}{2 z^{4}} d z
$$

where C is any simple closed curve enclosing 0 .
(5) Let f be holomorphic inside and on the unit circle C. Show that, for $0<|z|<1$,

$$
2 \pi i f(z)=\int_{C} \frac{f(w)}{w-z} d w-\int_{C} \frac{f(w)}{\left(w-\frac{1}{\bar{z}}\right.} d w
$$

From this, deduce the Poisson integral formula

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(1-r^{2}\right)}{1-2 r \cos (\theta-t)+r^{2}} f\left(e^{i t}\right) d t, \quad \text { for } 0<r<1
$$

(6) If $f(z)$ is holomorphic and $|f(z)| \leq \frac{1}{1-|z|}$ in $|z|<1$, show that $\left|f^{\prime}(0)\right| \leq 4$.
(7) Let $f(z)$ be holomorphic on \mathbb{C} such that $\left|f^{\prime}(z)\right| \leq|z|$. Show that $f(z)=a+b z^{2}$ with some constants $a, b \in \mathbb{C}$ such that $|b| \leq 1$.
(8) Find the Laurent series of $\frac{e^{2 z}}{(z-1)^{3}}$ around $z=1$.
(9) Evaluate

$$
\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)} d z
$$

where C is the curve $|z|=3$, oriented positively.

Solutions

(1) Since $\pi<4$, by Cauchy integral formula, $2 \pi i e^{2 \pi}$.
(2) By residue theorem, $2 \pi i\left(\frac{e^{2}}{2}-\frac{1}{2}\right)$.
(3)

$$
\int_{C} \overline{f(z)} d f(z)=-\int_{C} d(\bar{f}) f(z)=-\int_{C} f(z) \overline{f^{\prime}(z)} d \bar{z}
$$

hence is equal to negative of its conjugate (why are the equations valid?). A more elementary method was done in class.
(4) By series expansion,

$$
\begin{aligned}
e^{z} & =1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots \\
e^{-z} & =1-z+\frac{z^{2}}{2}-\frac{z^{3}}{6}+\cdots \\
e^{z}+e^{-z} & =2+z^{2}+O\left(z^{4}\right)
\end{aligned}
$$

hence the $1 / z$ component of $\frac{e^{z}+e^{-z}}{2 z^{4}}$ is 0 , hence the answer is 0 . There are other ways to do this as well, for instance, this is the 3 rd derivative of $\cosh (z)$ at $z=0$, which is $\sinh (0)=0$.
(5) Since $|1 / \bar{z}|>1$, it is outside the unit disk so the second integral is 0 .
(6) Use Cauchy integral formula for the derivative for a circle of radius $\frac{1}{2}$ centered at 0 .
(7) By Cauchy integral formula for the derivative,

$$
\begin{aligned}
\left|f^{\prime \prime}(z)\right| & =\left|\frac{1}{2 \pi i} \int_{|w-z|=R} \frac{f^{\prime}(w)}{(w-z)^{2}} d w\right| \\
& \leq \frac{1}{2 \pi R^{2}}(R+|z|) \int_{|w-z|=R} d w \leq 1+\frac{|w|}{R} \leq 2
\end{aligned}
$$

For R sufficiently large. Hence $f^{\prime \prime}$ is bounded and entire, hence constant. Use $\left|f^{\prime}(0)\right| \leq 0$ to show that the linear term is zero.
(8) One way to compute is

$$
e^{2 z}=e^{2(z-1)+2}=e^{2} \sum_{n=0}^{\infty} \frac{(2(z-1))^{n}}{n!}
$$

Then divide by $(z-1)^{3}$.
(9) Use Residue theorem, answer is $2 \pi i$.

